Peeling Back the Evolutionary Layers of Molecular Mechanisms Responsive to Exercise-Stress in the Skeletal Muscle of the Racing Horse
نویسندگان
چکیده
The modern horse (Equus caballus) is the product of over 50 million yrs of evolution. The athletic abilities of the horse have been enhanced during the past 6000 yrs under domestication. Therefore, the horse serves as a valuable model to understand the physiology and molecular mechanisms of adaptive responses to exercise. The structure and function of skeletal muscle show remarkable plasticity to the physical and metabolic challenges following exercise. Here, we reveal an evolutionary layer of responsiveness to exercise-stress in the skeletal muscle of the racing horse. We analysed differentially expressed genes and their co-expression networks in a large-scale RNA-sequence dataset comparing expression before and after exercise. By estimating genome-wide dN/dS ratios using six mammalian genomes, and FST and iHS using re-sequencing data derived from 20 horses, we were able to peel back the evolutionary layers of adaptations to exercise-stress in the horse. We found that the oldest and thickest layer (dN/dS) consists of system-wide tissue and organ adaptations. We further find that, during the period of horse domestication, the older layer (FST) is mainly responsible for adaptations to inflammation and energy metabolism, and the most recent layer (iHS) for neurological system process, cell adhesion, and proteolysis.
منابع مشابه
The effect of resistance exercise on oxidative stress in cardiac and skeletal muscle tissues of streptozotocin-induced diabetic rats
Abstract Background and Objective: It has been shown that oxidative stress increases in diabetes and it has an important role in its development and subsequent complications. Thus, the aim of this study was to investigate the effect of acute resistance exercise on oxidative stress in skeletal muscle and cardiac tissues of streptozotocin-induced diabetic rats. Materials and Methods: Twenty male ...
متن کاملThe Effect of Resistance and Progressive Training on HSP 70 and Glucose
Skeletal muscle may develop adaptive chaperone and enhancementdefense system through daily exercisestimulation. The present study investigated resistance and exhaustion training alters the expression of chaperoneproteins. These proteins function to maintain homeostasis, facilitate repair from injury and provide protection. Exercise-induced production of HSPs in skeletal muscle and peripheral le...
متن کاملThe Effect of Resistance and Progressive Training on HSP 70 and Glucose
Skeletal muscle may develop adaptive chaperone and enhancementdefense system through daily exercisestimulation. The present study investigated resistance and exhaustion training alters the expression of chaperoneproteins. These proteins function to maintain homeostasis, facilitate repair from injury and provide protection. Exercise-induced production of HSPs in skeletal muscle and peripheral le...
متن کاملCommon injuries in athletic horses at riding clubs in Tehran, Iran
Various forms of intensive sport place stress on the musculoskeletal system of the horse, during both racing and training. The musculoskeletal system of the horse has an inherent ability to adapt to the demands of high speed exercise, but exceeding the threshold of adaptive capacity may result in some form of damage. Continuing racing or training may delay the repair process and put the horse a...
متن کاملResponses of Muscle Mitochondrial Function to Physical Activity: A Literature Review
Skeletal muscles play an active role in regulating the metabolic homeostasis through their ability for relating to adipose tissue and endocrine hormones. Contraction of the skeletal muscle leads to increased release of several myokines, such as irisin, which is able to interact with the adipose tissue. Physical activity promotes the irisin mechanism by augmenting the peroxisomes (PGC1-α) in the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 20 شماره
صفحات -
تاریخ انتشار 2013